
Package: utf8 (via r-universe)
October 15, 2024

Title Unicode Text Processing

Version 1.2.3.9010

Description Process and print 'UTF-8' encoded international text
(Unicode). Input, validate, normalize, encode, format, and
display.

License Apache License (== 2.0) | file LICENSE

URL https://ptrckprry.com/r-utf8/, https://github.com/patperry/r-utf8

BugReports https://github.com/patperry/r-utf8/issues

Depends R (>= 2.10)

Suggests cli, covr, knitr, rlang, rmarkdown, testthat (>= 3.0.0),
withr

VignetteBuilder knitr, rmarkdown

Config/testthat/edition 3

Encoding UTF-8

RoxygenNote 7.3.2.9000

Repository https://patperry.r-universe.dev

RemoteUrl https://github.com/patperry/r-utf8

RemoteRef HEAD

RemoteSha 67e18eb0de38efb6abb362c5ff4ce03406b672d0

Contents
utf8-package . 2
as_utf8 . 2
output_utf8 . 3
utf8_encode . 5
utf8_format . 6
utf8_normalize . 7
utf8_print . 8
utf8_width . 10

Index 12

1

https://ptrckprry.com/r-utf8/
https://github.com/patperry/r-utf8
https://github.com/patperry/r-utf8/issues

2 as_utf8

utf8-package The utf8 Package

Description

UTF-8 Text Processing

Details

Functions for manipulating and printing UTF-8 encoded text:

• as_utf8 attempts to convert character data to UTF-8, throwing an error if the data is invalid;

• utf8_valid tests whether character data is valid according to its declared encoding;

• utf8_normalize converts text to Unicode composed normal form (NFC), optionally applying
case-folding and compatibility maps;

• utf8_encode encodes a character string, escaping all control characters, so that it can be
safely printed to the screen;

• utf8_format formats a character vector by truncating to a specified character width limit or
by left, right, or center justifying;

• utf8_print prints UTF-8 character data to the screen;

• utf8_width measures the display width of UTF-8 character strings (many emoji and East
Asian characters are twice as wide as other characters);

• output_ansi and output_utf8 test for the output connections capabilities.

For a complete list of functions, use library(help = "utf8").

Author(s)

Patrick O. Perry

as_utf8 UTF-8 Character Encoding

Description

UTF-8 text encoding and validation.

Usage

as_utf8(x, normalize = FALSE)

utf8_valid(x)

output_utf8 3

Arguments

x character object.

normalize a logical value indicating whether to convert to Unicode composed normal form
(NFC).

Details

as_utf8 converts a character object from its declared encoding to a valid UTF-8 character object,
or throws an error if no conversion is possible. If normalize = TRUE, then the text gets transformed
to Unicode composed normal form (NFC) after conversion to UTF-8.

utf8_valid tests whether the elements of a character object can be translated to valid UTF-8
strings.

Value

For as_utf8, the result is a character object with the same attributes as x but with Encoding set to
"UTF-8".

For utf8_valid a logical object with the same names, dim, and dimnames as x.

See Also

utf8_normalize, iconv.

Examples

the second element is encoded in latin-1, but declared as UTF-8
x <- c("fa\u00E7ile", "fa\xE7ile", "fa\xC3\xA7ile")
Encoding(x) <- c("UTF-8", "UTF-8", "bytes")

attempt to convert to UTF-8 (fails)
Not run: as_utf8(x)

y <- x
Encoding(y[2]) <- "latin1" # mark the correct encoding
as_utf8(y) # succeeds

test for valid UTF-8
utf8_valid(x)

output_utf8 Output Capabilities

Description

Test whether the output connection has ANSI style escape support or UTF-8 support.

4 output_utf8

Usage

output_ansi()

output_utf8()

Details

output_ansi tests whether the output connection supports ANSI style escapes. This is TRUE if the
connection is a terminal and not the Windows GUI. Otherwise, it is true if running in RStudio 1.1 or
later with ANSI escapes enabled, provided stdout() has not been redirected to another connection
by sink().

output_utf8 tests whether the output connection supports UTF-8. For most platforms l10n_info()$`UTF-8`
gives this information, but this does not give an accurate result for Windows GUIs. To work around
this, we proceed as follows:

• if the character locale (LC_CTYPE) is "C", then the result is FALSE;

• otherwise, if l10n_info()$`UTF-8` is TRUE, then the result is TRUE;

• if running on Windows, then the result is TRUE;

• in all other cases the result is FALSE.

Strictly speaking, UTF-8 support is always available on Windows GUI, but only a subset of UTF-
8 is available (defined by the current character locale) when the output is redirected by knitr or
another process. Unfortunately, it is impossible to set the character locale to UTF-8 on Windows.
Further, the utf8 package only handles two character locales: C and UTF-8. To get around this, on
Windows, we treat all non-C locales on that platform as UTF-8. This liberal approach means that
characters in the user’s locale never get escaped; others will get output as <U+XXXX>, with incorrect
values for utf8_width.

Value

A logical scalar indicating whether the output connection supports the given capability.

See Also

.Platform, isatty, l10n_info, Sys.getlocale

Examples

test whether ANSI style escapes or UTF-8 output are supported
cat("ANSI:", output_ansi(), "\n")
cat("UTF8:", output_utf8(), "\n")

switch to C locale
Sys.setlocale("LC_CTYPE", "C")
cat("ANSI:", output_ansi(), "\n")
cat("UTF8:", output_utf8(), "\n")

switch to native locale
Sys.setlocale("LC_CTYPE", "")

utf8_encode 5

tmp <- tempfile()
sink(tmp) # redirect output to a file
cat("ANSI:", output_ansi(), "\n")
cat("UTF8:", output_utf8(), "\n")
sink() # restore stdout

inspect the output
readLines(tmp)

utf8_encode Encode Character Object as for UTF-8 Printing

Description

Escape the strings in a character object, optionally adding quotes or spaces, adjusting the width for
display.

Usage

utf8_encode(x, width = 0L, quote = FALSE, justify = "left", escapes = NULL,
display = FALSE, utf8 = NULL)

Arguments

x character object.

width integer giving the minimum field width; specify NULL or NA for no minimum.

quote logical scalar indicating whether to surround results with double-quotes and es-
cape internal double-quotes.

justify justification; one of "left", "right", "centre", or "none". Can be abbrevi-
ated.

escapes a character string specifying the display style for the backslash escapes, as an
ANSI SGR parameter string, or NULL for no styling.

display logical scalar indicating whether to optimize the encoding for display, not byte-
for-byte data transmission.

utf8 logical scalar indicating whether to encode for a UTF-8 capable display (ASCII-
only otherwise), or NULL to encode for output capabilities as determined by
output_utf8().

Details

utf8_encode encodes a character object for printing on a UTF-8 device by escaping controls char-
acters and other non-printable characters. When display = TRUE, the function optimizes the encod-
ing for display by removing default ignorable characters (soft hyphens, zero-width spaces, etc.) and
placing zero-width spaces after wide emoji. When output_utf8() is FALSE the function escapes
all non-ASCII characters and gives the same results on all platforms.

6 utf8_format

Value

A character object with the same attributes as x but with Encoding set to "UTF-8".

See Also

utf8_print.

Examples

the second element is encoded in latin-1, but declared as UTF-8
x <- c("fa\u00E7ile", "fa\xE7ile", "fa\xC3\xA7ile")
Encoding(x) <- c("UTF-8", "UTF-8", "bytes")

encoding
utf8_encode(x)

add style to the escapes
cat(utf8_encode("hello\nstyled\\world", escapes = "1"), "\n")

utf8_format UTF-8 Text Formatting

Description

Format a character object for UTF-8 printing.

Usage

utf8_format(x, trim = FALSE, chars = NULL, justify = "left",
width = NULL, na.encode = TRUE, quote = FALSE,
na.print = NULL, print.gap = NULL, utf8 = NULL, ...)

Arguments

x character object.

trim logical scalar indicating whether to suppress padding spaces around elements.

chars integer scalar indicating the maximum number of character units to display.
Wide characters like emoji take two character units; combining marks and de-
fault ignorables take none. Longer strings get truncated and suffixed or prefixed
with an ellipsis ("..." or "\u2026", whichever is most appropriate for the cur-
rent character locale). Set to NULL to limit output to the line width as determined
by getOption("width").

justify justification; one of "left", "right", "centre", or "none". Can be abbrevi-
ated.

width the minimum field width; set to NULL or 0 for no restriction.

na.encode logical scalar indicating whether to encode NA values as character strings.

utf8_normalize 7

quote logical scalar indicating whether to format for a context with surrounding double-
quotes ('"') and escaped internal double-quotes.

na.print character string (or NULL) indicating the encoding for NA values. Ignored when
na.encode is FALSE.

print.gap non-negative integer (or NULL) giving the number of spaces in gaps between
columns; set to NULL or 1 for a single space.

utf8 logical scalar indicating whether to format for a UTF-8 capable display (ASCII-
only otherwise), or NULL to format for output capabilities as determined by
output_utf8().

... further arguments passed from other methods. Ignored.

Details

utf8_format formats a character object for printing, optionally truncating long character strings.

Value

A character object with the same attributes as x but with Encoding set to "UTF-8" for elements that
can be converted to valid UTF-8 and "bytes" for others.

See Also

utf8_print, utf8_encode.

Examples

the second element is encoded in latin-1, but declared as UTF-8
x <- c("fa\u00E7ile", "fa\xE7ile", "fa\xC3\xA7ile")
Encoding(x) <- c("UTF-8", "UTF-8", "bytes")

formatting
utf8_format(x, chars = 3)
utf8_format(x, chars = 3, justify = "centre", width = 10)
utf8_format(x, chars = 3, justify = "right")

utf8_normalize Text Normalization

Description

Transform text to normalized form, optionally mapping to lowercase and applying compatibility
maps.

Usage

utf8_normalize(x, map_case = FALSE, map_compat = FALSE,
map_quote = FALSE, remove_ignorable = FALSE)

8 utf8_print

Arguments

x character object.

map_case a logical value indicating whether to apply Unicode case mapping to the text.
For most languages, this transformation changes uppercase characters to their
lowercase equivalents.

map_compat a logical value indicating whether to apply Unicode compatibility mappings to
the characters, those required for NFKC and NFKD normal forms.

map_quote a logical value indicating whether to replace curly single quotes and Unicode
apostrophe characters with ASCII apostrophe (U+0027).

remove_ignorable

a logical value indicating whether to remove Unicode "default ignorable" char-
acters like zero-width spaces and soft hyphens.

Details

utf8_normalize converts the elements of a character object to Unicode normalized composed form
(NFC) while applying the character maps specified by the map_case, map_compat, map_quote, and
remove_ignorable arguments.

Value

The result is a character object with the same attributes as x but with Encoding set to "UTF-8".

See Also

as_utf8.

Examples

angstrom <- c("\u00c5", "\u0041\u030a", "\u212b")
utf8_normalize(angstrom) == "\u00c5"

utf8_print Print UTF-8 Text

Description

Print a UTF-8 character object.

Usage

utf8_print(x, chars = NULL, quote = TRUE, na.print = NULL,
print.gap = NULL, right = FALSE, max = NULL,
names = NULL, rownames = NULL, escapes = NULL,
display = TRUE, style = TRUE, utf8 = NULL, ...)

utf8_print 9

Arguments

x character object.

chars integer scalar indicating the maximum number of character units to display.
Wide characters like emoji take two character units; combining marks and de-
fault ignorables take none. Longer strings get truncated and suffixed or prefixed
with an ellipsis ("..." in C locale, "\u2026" in others). Set to NULL to limit
output to the line width as determined by getOption("width").

quote logical scalar indicating whether to put surrounding double-quotes ('"') around
character strings and escape internal double-quotes.

na.print character string (or NULL) indicating the encoding for NA values. Ignored when
na.encode is FALSE.

print.gap non-negative integer (or NULL) giving the number of spaces in gaps between
columns; set to NULL or 1 for a single space.

right logical scalar indicating whether to right-justify character strings.

max non-negative integer (or NULL) indicating the maximum number of elements to
print; set to getOption("max.print") if argument is NULL.

names a character string specifying the display style for the (column) names, as an
ANSI SGR parameter string.

rownames a character string specifying the display style for the row names, as an ANSI
SGR parameter string.

escapes a character string specifying the display style for the backslash escapes, as an
ANSI SGR parameter string.

display logical scalar indicating whether to optimize the encoding for display, not byte-
for-byte data transmission.

style logical scalar indicating whether to apply ANSI terminal escape codes to style
the output. Ignored when output_ansi() is FALSE.

utf8 logical scalar indicating whether to optimize results for a UTF-8 capable display,
or NULL to set as the result of output_utf8(). Ignored when output_utf8()
is FALSE.

... further arguments passed from other methods. Ignored.

Details

utf8_print prints a character object after formatting it with utf8_format.

For ANSI terminal output (when output_ansi() is TRUE), you can style the row and column names
with the rownames and names parameters, specifying an ANSI SGR parameter string; see https://
en.wikipedia.org/wiki/ANSI_escape_code#SGR_(Select_Graphic_Rendition)_parameters.

Value

The function returns x invisibly.

See Also

utf8_format.

https://en.wikipedia.org/wiki/ANSI_escape_code#SGR_(Select_Graphic_Rendition)_parameters
https://en.wikipedia.org/wiki/ANSI_escape_code#SGR_(Select_Graphic_Rendition)_parameters

10 utf8_width

Examples

printing (assumes that output is capable of displaying Unicode 10.0.0)
print(intToUtf8(0x1F600 + 0:79)) # with default R print function
utf8_print(intToUtf8(0x1F600 + 0:79)) # with utf8_print, truncates line
utf8_print(intToUtf8(0x1F600 + 0:79), chars = 1000) # higher character limit

in C locale, output ASCII (same results on all platforms)
oldlocale <- Sys.getlocale("LC_CTYPE")
invisible(Sys.setlocale("LC_CTYPE", "C")) # switch to C locale
utf8_print(intToUtf8(0x1F600 + 0:79))
invisible(Sys.setlocale("LC_CTYPE", oldlocale)) # switch back to old locale

Mac and Linux only: style the names
see https://en.wikipedia.org/wiki/ANSI_escape_code#SGR_(Select_Graphic_Rendition)_parameters
utf8_print(matrix(as.character(1:20), 4, 5),

names = "1;4", rownames = "2;3")

utf8_width Measure the Character String Width

Description

Compute the display widths of the elements of a character object.

Usage

utf8_width(x, encode = TRUE, quote = FALSE, utf8 = NULL)

Arguments

x character object.

encode whether to encode the object before measuring its width.

quote whether to quote the object before measuring its width.

utf8 logical scalar indicating whether to determine widths assuming a UTF-8 capable
display (ASCII-only otherwise), or NULL to format for output capabilities as
determined by output_utf8().

Details

utf8_width returns the printed widths of the elements of a character object on a UTF-8 device (or
on an ASCII device when output_utf8() is FALSE), when printed with utf8_print. If the string
is not printable on the device, for example if it contains a control code like "\n", then the result is
NA. If encode = TRUE, the default, then the function returns the widths of the encoded elements via
utf8_encode); otherwise, the function returns the widths of the original elements.

Value

An integer object, with the same names, dim, and dimnames as x.

utf8_width 11

See Also

utf8_print.

Examples

the second element is encoded in latin-1, but declared as UTF-8
x <- c("fa\u00E7ile", "fa\xE7ile", "fa\xC3\xA7ile")
Encoding(x) <- c("UTF-8", "UTF-8", "bytes")

get widths
utf8_width(x)
utf8_width(x, encode = FALSE)
utf8_width('"')
utf8_width('"', quote = TRUE)

Index

∗ package
utf8-package, 2

.Platform, 4

as_utf8, 2, 2, 8

iconv, 3
isatty, 4

l10n_info, 4

output_ansi, 2
output_ansi (output_utf8), 3
output_utf8, 2, 3

Sys.getlocale, 4

utf8 (utf8-package), 2
utf8-package, 2
utf8_encode, 2, 5, 7
utf8_format, 2, 6, 9
utf8_normalize, 2, 3, 7
utf8_print, 2, 6, 7, 8, 11
utf8_valid, 2
utf8_valid (as_utf8), 2
utf8_width, 2, 10

12

	utf8-package
	as_utf8
	output_utf8
	utf8_encode
	utf8_format
	utf8_normalize
	utf8_print
	utf8_width
	Index

